AUTOMATSKA KLASIFIKACIJA SATELITSKIH SLIKA OBLAČNIH SUSTAVA

Dr. Bojan LIPOVŠAK
Republički hidrometeorološki zavod, Zagreb

1. UVOD

Proučavanje vremenskih procesa radi izdavanja prognoze ili upozorenja o naišku opasnih vremenskih pojava uvjetuje neprekidno prikupljanje meteoroloških podataka s velikih područja Zemlje. Raspored meteoroloških stanica i osmatraчких točaka uvjetovan je naseljenošću, oblikom terena, pristupačnosti pojedinog locakciji te je vrlo nejednoliko raspoređen na kopnu, dok je s morskih prostranstava moguće dobiti podatak samo s brodova ili meteoroloških platača. Obačni sistemi, rad i vrsta naoblake, odvijaju su bili predmet intenzivnih proučavanja zbog njihove povezanosti s karakterom vremena koje svojim prisustvom donose. Upotrebljavanje radara sredinom dvadesetog stoljeća ostvarena je mogućnost praćenja oborinskih zona i određivanja količine oborine u domet radarskih mjerenja pod područjima sa kojih do tada takvih podataka nije bilo. Upotrebljenjem satelita u meteorologiji početak šezdesetih godina ostvarena je mogućnost dobijanja slika oblačnih sustava iz sverena i neprekidnog praćenja razvoja oblačak na planetarnoj skali.

Pojavom prvih satelitskih slika oblačnih sustava razvijaju se i prvi pokusi raspoznavanja tipova oblačaka i njihova klasifikacija. Prve klasifikacije temeljile se na upotrebama satelitskih slika u vidljivom dijelu Spektra. (Conover, 1962; Kondratjev, 1966; Anderson, 1966; Lee i Taggart, 1969), a raspoznavanje različitih vrsta oblačka vrši se na osnovi oblika, tkiva oblačne mase i svjetline.

UDK 528.8 551.576
551.309 324. 1 001.33
551.307 362.2
Izvorni znanstveni rad
Prispjelo: 6. 02. 1989

Greaves i Chang (1970) upotrebljavaju statističku metodu i raspoređuju pet osnovnih kategorija oblačaka upotrebom digitalnih podataka 3 valna područja 0.2–0.4, 0.6–0.8 i 1.0–1.1 μm. Lo i Johnson (1971) upotrebljavaju bivariantnu distribuciju frekvencija za izdavanje različitih osobina oblačaka na osnovi podataka satelita NIMBUS-2 u valnim područjima 0.6–0.9 μm, i 1.0–1.1 μm. Both (1973) kombiniraju multispektralni pristup u 2 valne duljine 0.5–0.7 i 1.0–1.25 μm sa metodom ekstrakcije svojstava (feature extraction) i klasifikacijama oblačaka u 8 klasi. Bizari (1976) pretpostavlja da su tipovi oblačaka povezani sa specifičnom spektalnom strukturom na dvodimenzionalnom histogramu čestina. Metoda automatimaškog odjeljivanja i svrstavanja oblačaka u razreda Seneca (1976) temelji se na pragovima vrijednosti temperature dobivene iz satelitskih mjerenja, koja definira matricu odluke za svrstavanje oblačaka u razreda. Senec upotrebljava podatke 4 kanalnih skenera valnih duljina 0.2–0.4, 0.6–0.7, 1.0–1.1 i 20.0–23.0 μm. Za klasifikaciju su potrebni i podaci vertikalnog profila temperature i vlažnosti zraka, te klimatološki podaci visine vrhova oblačaka. Raynolds i suradnici (1977) razvijaju dvspektralnu metodu za određivanje količine naoblake upotrebom vidljivih i infracrvenih satelitskih slika. Szeyvach i suradnici (1978) razvijaju shemu za dinamičku klasifikaciju oblačaka mezo skale, temeljenu na različitih uzastopnih slika naoblake nad istim područjem dobivenih s geostacionarnog satelita. Raynolds i suradnici (1978) razvijaju metoda za detekciju i separaciju oblačaka iz satelitskih mjerenja infracrvenog dijela Spektra. Parikh i Rosenfeld (1978) razvijaju algoritam za klasifikaciju oblačaka na temelju podataka infracrvenog dijela Spektra. Algoritam povezuje statističku metodu grupiranja u klase (clustering) i tehničke segmentacije slike. Cayla (1978) ukazuje na problem klasifikacije transparentnih cirusa i predlaže upotrebu kanala valne duljine 5.7–7.1 μm, meteorološkog satelita METEOSAT u kojem je jaka absorpcija vodene pare. Parikh i Ball (1980) klasificiraju infracrvene podatke mjerenja satelita SMS1 u 5 razreda na osnovi temperature i Robertsova gradijenta. Smith (1981) predlaže archiviranje meteoroloških satelitskih podataka u obliku histograma, osnovni je cilj zadržavanje informacije o radijskim svojstvima oblačaka. Liljas (1981, 1984) razvija shemu klasifikacije visoko rezolutnih podataka satelita NOAA 7 u tri spektalna područja metodom fiksnih granica vrijednosti metah klasama. Desbois i suradnici (1982) razvijaju algoritam za klasifikaciju oblačaka primjenom clusteringa, tj. grupiranja podataka tri valne duljine geostacionarnog satelita METEOSAT. Simmer i suradnici (1982) pokazuju da su digitalni podaci satelita u vidljivom i infracrvenom dijelu Spektra raspoređeni po zakonu normalne ili Gaussove razdoblje. U radu WMO...

1.2. FIZIKALNE OSNOVE DALJINSKOG MJERENJA I KLASIFIKACIJE OBLAKA

Daljinska istraživanja (remote sensing) pomoću meteoroloških satelita temelje se na mjerenju radijske sistema Zemlja — atmosfera pomoću višekanalnih spektrometara.

Primjene satelitskih skenera svodi se na mjerenje temperature, što slijedi iz Planckovog zakona radiacije. On povezuje gustoću energije radiacije, valnog duljina zračenja i temperature tijela u obliku:

\[M_0 = c C_1 \lambda^\alpha (\exp (C_2 / \lambda T) - 1)^{-1}, \]

gdje su:

- \(M_0 \) — spektralna gustoća energije zračenja u dijelu spektra oko valne duljine \(\lambda \) u \(\text{m} \mu \text{m} \).
- \(\epsilon \) — konstanta emisivnosti
- \(C_1 \) — 3.7413 \(10^3 \) \(\text{W m}^{-2} \text{m}^{-2} \) prva konstanta zračenja
- \(\lambda \) — valna duljina radiacije \(\mu \text{m} \)
- \(C_2 \) — 1.4388 \(10^4 \) \(\mu \text{m} \) K, druga konstanta zračenja
- \(T \) — termodynamička temperatura tijela

\(\alpha \) je konstanta koja poprime vrijednosti:

- 0 za savršeni reflektor,
- 1 za savršeno crno tijelo,
- 0 < \(\alpha < 1 \) za sivo tijelo,
- \(\alpha = f (\lambda) \) za sve ostat će.

Satelitski senzor prima zračenje sa Zemlje. Snaga zračenja proporcionalna je spektralnom zračenju cilja, otvoru senzora, vidnom polju senzora, valnoj duljini elektromagnetskog spektra i prozirnosti atmosfere za zračenje. Matematički se shtaga reflektiranog zračenja koju sensor prima može prikazati kao:

\[I_0 = 1 / \pi R E_\alpha \cos \theta_\alpha, \]

gdje je:

- \(E_\alpha \) — spektralna iradijanca — snaga zračenja po jedinici površine cilja,
- \(R \) — dvosmjerni faktor refleksije,
- \(\theta_\alpha \) — kut Sunca.

Za termički dio spektra spektralna je radiacije cilja definirana kao:

\[L_0 = 1 / \pi E_\alpha \cos \theta_\alpha. \]

Spektralna iradijanca definirana je Planckovim zakonom radiacije (1). Upadna snaga zračenja je, prema tome, funkcija temperature cilja. Temperatura cilja se u vidljivom dijelu spektra (reflektivni dio spektra) naziva i temperature boje.

za daljinsko mjerenje satelitom oblaci predstavljaju cilj koji zračenje Sunca reflektira u vidljivom dijelu spektra. a zrači energiju u infracrvenom dijelu spektra. Temperatura oblika funkcija je visine na kojoj se oblik nalazi. Visina oblika definira tip oblika. Temperatura boje oblika ovisi o gustoći oblacičnih čestica, njihovom sastavu (led ili voda) i veličini, dakle veličinama koje definiraju različite tipove oblika. Možemo zaključiti da se satelitskim skenerima mjere fizička svojstva oblika koja omogućuju konstrukciji klasifikatora tipa oblika.

2. RASPOZNAVANJE OBLAKA NA OSNOVI DIGITALNIH SATELITSKIH PODATKA — PRIMJENJENA METODOLOGIJA

Polarni orbitalni sateliti operativno pokrivaju Zemlju sa digitalnim podacima osmatranja satelitskih skenera, radiacije od 250 m do 30 km. (Lipovščak, 1985 b), a nad istim dijelom Zemlje nalaze se svaka tri sata. Geostacionarni sateliti dostavljaju svakih 30 minuta podatke u digitalnom obliku za cijeli Zemljin disk. Ogronima kočinca informacija, koje se na taj način prikupljaju, postala je otežavajuća činjenica u analizi satelitskih slika. Procjenjuje se da je za arhiviranje svih stirovi satelitskih podataka (digitalnih slika) godišnje potrebno 200.000 magnetskih traka gustoća zapisa 1.600 bpi.

Zahtevi postavljeni automatskom klasifikatoru jesu:
1. raspoznavanje se mora vršiti na osnovi radiacijskih svojstava oblika;
2. raspoznavanje mora biti moguće vršiti za vrijeme noćnih i dnevnih preleta satelita (noću su odsutni podaci u vidljivom dijelu zračenja);
3. raspoznavanje mora biti primjenjivo u svim geografskim širinama;
4. klasifikator mora biti modularan, tako da je moguće u proces identifikacije unijeti dodatne postupke određivanja klasa (pragovi, a priori vjerojatnost, tkivo i oblik rubova oblika).

Osim raspoznavanja i svrstavanja oblika u tipove klasifikator mora biti sposoban raspoznati i svrstati u klas podsloge na Zemlji: tlo, vodo (oceani, jezera i rijeke), snijeg i leđ. S obzirom na svojstva oblika (temperaturna područja u kojima se javlja i svjetlost), Lipovščak (1983) predlaže raspoznavanje oblika i vrsta podsloge u II klasa (Tablica 1.).

Tablica 1.

<table>
<thead>
<tr>
<th>Klasa</th>
<th>Pojava</th>
<th>Boja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cb</td>
<td>crvena</td>
</tr>
<tr>
<td>2</td>
<td>Cucorg</td>
<td>svjetlo ljubičasta</td>
</tr>
<tr>
<td>3</td>
<td>Ns</td>
<td>siva</td>
</tr>
<tr>
<td>4</td>
<td>Ac</td>
<td>tamno smeda</td>
</tr>
<tr>
<td>5</td>
<td>As</td>
<td>tamno ljubičasta</td>
</tr>
<tr>
<td>6</td>
<td>Ci, Cs, Cc</td>
<td>svjetlo plava</td>
</tr>
<tr>
<td>7</td>
<td>Sc, Cu</td>
<td>žuta</td>
</tr>
<tr>
<td>8</td>
<td>St, magla</td>
<td>svjetlo smeda</td>
</tr>
<tr>
<td>9</td>
<td>snijeg</td>
<td>bijela</td>
</tr>
<tr>
<td>10</td>
<td>tlo</td>
<td>zelena</td>
</tr>
<tr>
<td>11</td>
<td>more, voda</td>
<td>plava</td>
</tr>
<tr>
<td>12</td>
<td>nepoznato</td>
<td>crna</td>
</tr>
</tbody>
</table>

Rezultati satelitskih mjerenja pojedinih rodova i vrsta oblika u nekom području valnih duljina spektra.
mogu se prikazati normalnom razdiobom (Simmer i suradnici, 1982; Coakley i suradnici 1984), što navodi na misao da se normalna razdioba primijeni kao funkcija diskriminacije za razlikovanje pojedinih rodova oblika međusobno, kao i za razlučivanje što je Zemljina površina, a što su oblici.

Skup mjerenja koja definiraju neki oblik jesu veličine iznajrane satelitskim skenerom visoke moći razlučivanja (AVHRR podaci) u tri valna područja spektra zračenja. Shema modela klasifikatora oblika prikazana je slikom 1.

\[X_1 \to \text{OBLAK} \to \text{SENZOR} \to X_2 \to \text{KLASIFIKATOR} \to \text{REZULTAT} \to X_3 \]

Slika 1. Model klasifikatora oblika.

Senzor je satelitski skener, a \(X_i \) su vrijednosti izmjerene u različitim valnim duljinama spektra za isti element oblika (pixel). Za različite vrste oblika različite su vrijednosti \(X_i \), zbog njihovih različitih fizikalnih svojstava.

Lipovački (1984) diskutira primjenu trodimenzionalne normalne razdiobe kao funkcije diskriminacije među klasama oblika uz primjenu podataka mjerenja u vidljivom blizu infracrvenom i infracrvenom dijelu spektra. Za 11 klasa pojava za isti kanal mjerenja definira se 11 različitih normalnih razdioba koje su definirane srednjakom i standardnom devijacijom.

U slučaju trodimenzionalne normalne razdiobe potrebno je za svaku funkciju diskriminacije odrediti 9 elementa: 3 srednja i 6 elemenata matrice kovarijanci. Za 11 klasa potrebno je odrediti 99 vrijednosti, i time je definirano 11 različitih trodimenzionalnih normalnih razdioba.

Vjerojatnost da je \(X \) iz klase \(\omega_i \) za višedimenzionalnu normalnu razdiobu, može se napisati u obliku:

\[
p(X/\omega_i) = \frac{1}{(2\pi)^{n/2}|\Sigma_i|^{1/2}}\exp\left(-\frac{1}{2}(X-\mu_i)^\top \Sigma_i^{-1}(X-\mu_i)\right).
\]
(4)

Za klasifikaciju oblika na osnovi digitalnih podataka satelitskog skenera velike moći razlučivanja primijenjen je klasifikator tipa maksimalne vjerojatnosti. (maximum likelihood). Princip klasifikacije definiran je na slijedeći način:

Neka su \(x_1, \ldots, x_m \) slučajne varijable, gdje je \(x_i \) mjerenje i-tog uzorka. Za svaku klasu uzorka \(\omega_j, j = 1, \ldots, m \) pretpostavimo da je poznata multivarijantna (n dimenzionalna) funkcija gustoće vjerojatnosti uzorka \(X \) dana sa \(p(X/\omega_j) \) i vjerojatnost pojava uzorka \(\omega_j \) prikazana sa \(P(\omega_j) \) Na osnovi a priori informacije p (X/\omega_j) i P(\omega_j), j = 1, m, klasifikator je dužan rasporedati uzorak uz minimalnu vjerojatnost pogreške.

Matematicki prikazana funkcija diskriminacije za Bayesov klasifikator dana je: \(G_i(X) = \ln P(\omega_i)/P(\omega_j) P(X/\omega_j), \)

\(G_i(X) = \ln P(\omega_i)/0.5 \ln |\Sigma_j| - 0.5(X - \mu_j)^\top \Sigma_j^{-1}(X - \mu_j) \).

(6)

Za određivanje a prirodi vjerojatnosti potreban je duži niz prikupljanja satelitskih podataka i izrada karata čes-

tine pojave pojedinih klasa oblika, odnosno pojava na nekom području. Za početne korake klasifikacije uzima se da je a priori vjerojatnost pojave određene klase jednaka za sve klase.

Razlikuje se postupak inicijalnog učenja klasifikatora i postupak obnavljanja baze podataka jer su upotrijebljeni različiti algoritmi za izračunavanje vrijednosti parametara funkcije diskriminacije (Lipovački, 1986).

\[
\begin{align*}
G_1(x) & > 0 \\
\text{DA} & \\
\text{PRIJEDELJIVANJE} & \\
\text{KLASE} & \\
\text{SORTIRANJE} & \\
\text{MAKSIMALNE} & \\
\text{VRJEDNOTI} & \\
\end{align*}
\]

Slika 2. Shema programskog paketa za učenje klasifikatora i arhiviranje parametara funkcije diskriminacije.

Primeri funkcije diskriminacije među klasama određeni su u potrebnom jednadžbi:

\[
\begin{align*}
\mu_{(N+K)} & = 1/(N + K) (N\mu_N + K\mu_K), \\
\sigma_{(N+K)} & = N/(N + K) (\sigma_N + \mu_N\mu_N) + K/(N + K) (\sigma_K + \mu_K\mu_K) - 1/(N + K)^2 (N\mu_N + K\mu_K) (N\mu_N + K\mu_K). \end{align*}
\]

gdje su \(\mu_N, \sigma_N \) srednja i kovariancija klase i izračunati iz \(N \) vrijednosti elemenata slike jednog uzorka, a \(\mu_K, \sigma_K \) srednja i kovarianca klase i, izračunati iz \(K \) vrijednos-
ti elemenata slike drugog uzorka, a \(\mu_{(N+K)} \) i \(\sigma_{(N+K)} \) su srednjač i kovarijanca za oba skupa podataka.

Paket programa za izračunavanje parametara funkcije distribucije izražen je na taj način da omogućava neprekidno nadopunjavanje i izmjenu baze podataka parametara. Osim postupka obnavljanja baze podataka bazu je moguće proširiti uvođenjem novih klasa. Baza podataka parametara može se načiniti za različite vrste satelitskih ili ostalih višespektralnih podataka koji se klasificiraju.

Nakon završetka izračunavanja parametri se upisuju u bazu podataka parametara funkcije diskriminacije među klasama.

U postupak identifikacije, koji je shematski prikazan na slici 3, u jednadžbu kojom je definirana funkcija diskriminacija među klasama moguće je ugraditi granične vrijednosti koje definiraju vjerojatnost da je pojava iz određene klase. Značenje praga je da je vjerojatnost da podatak pripada nekoj klasi zanemarivo mala. Prag vjerojatnosti definira se unaprijed prije postupka identifikacije, i to za svaku klasu posebno ili za sve klase jednim iznosom. U radu je korišten prag vjerojatnosti 0.05, a algoritam za klasifikaciju zamišljen je tako da sve elemente slike za koje je vrijednost funkcije diskriminacije manja od praga svrstava u klasu nepoznatog porijekla.

\[
\begin{align*}
g_i(X) & : \text{ODREĐI} \\
x \rightarrow & : \text{NAJVEĆI} \rightarrow \text{REZULTAT} \\
g_i(X) & : \text{Slika 3. Shematski prikaz upotrijebljenog pravila raspoznava} \text{nja i svrstavanja u grupe.}
\end{align*}
\]

Slika 4. Prizemna sinoptička situacija dana 08. 11. 1983. u 00 GMT, nad područjem Indokine i okolnih mora.
3. OGIS SLIKA ZA UČENJE KLASIFIKATORA

Za početno učenje klasifikatora izdvojeni su podaci koje je satelit NOAA-7 dostavljao za vrijeme preleta orbitama broj 12522 i 13323. Primljeni podaci sadrže podatke vidljivog (kanal 1), blizu infracrvenog (kanal 3) i infracrvenog (kanal 4) dijela spektra.

Podaci su uneseni u bazu podataka i označeni kao slike 11, 13, 14, 21, 23, 24. Oznake slika odabrane su tako da prvi broj označava redni broj odabrane slike za učenje, a drugi broj označava kanal višespektralnog skenera pomoću kojeg je slika dobivena. Osnovne karakteristike odabranih slika za učenje klasifikatora prikazane su tablicom 2.

Tablica 2.
Karakteristike upotrebljenih trening slika (Z — Zemlja, M — more, * — snijeg, Mg Maglia, rodovi oblaka).

<table>
<thead>
<tr>
<th>Slika</th>
<th>Orbita</th>
<th>Datum</th>
<th>Kanal</th>
<th>Geografske koordinate</th>
<th>Komentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12522</td>
<td>08.11.83</td>
<td>1</td>
<td>84E — 100E, 54N — 35N</td>
<td>Cb, Ci, Cs, As, M, Z</td>
</tr>
<tr>
<td>13</td>
<td>12522</td>
<td>08.11.83</td>
<td>3</td>
<td>84E — 100E, 54N — 35N</td>
<td>Cb, Ci, Cs, As, M, Z</td>
</tr>
<tr>
<td>14</td>
<td>12522</td>
<td>08.11.83</td>
<td>4</td>
<td>84E — 100E, 54N — 35N</td>
<td>Cb, Ci, Cs, As, M, Z</td>
</tr>
<tr>
<td>21</td>
<td>13323</td>
<td>23.01.84</td>
<td>1</td>
<td>71E — 77E, 32N — 36N</td>
<td>Ci, Ci, Z, Mg*</td>
</tr>
<tr>
<td>22</td>
<td>13323</td>
<td>23.01.84</td>
<td>3</td>
<td>71E — 77E, 32N — 36N</td>
<td>Ci, Ci, Z, Mg*</td>
</tr>
<tr>
<td>24</td>
<td>13323</td>
<td>23.01.84</td>
<td>4</td>
<td>71E — 77E, 32N — 36N</td>
<td>Ci, Ci, Z, Mg*</td>
</tr>
</tbody>
</table>

Odabrana slika 1 prikazuje podatke preleta satelita nad područjem Indokine, slika 6. Vrijeme preleta satelita je 13.05, lokalno vrijeme. Prizemna sinoptička karta (slika 4) za isti dan u 00 GMT (04.30, lokalno vrijeme) ukazuje na postojanje niskog tlaka nad područjem Bengalskog zaljeva. Na području koje je prikazano ovom slikom zamijećeni su oblaci roda Cumulonimbus, Cumulus congestus, Cirrostratus, Cirrus, Altostratus i Stratocumulus.

Odabrana slika 2 prikazuje podatke preleta satelita preko Himalaje, i to područje Kašmira i masiva Kara Korum (slika 7). Prizemna sinoptička situacija dana 23. 01. 1984. u 06GMT (slika 5) karakteristična je po vedrom vremenu nad područjem odabrane satelitske slike. Na tlu masiva Himalaje je snježni pokrov, u kotlinama mjestimice ima magle, nad vrhovima planinskog masiva zamijećeni su Strato-cumulusi.

S odabranih slika izdvojena su manja područja koja služe za učenje klasifikatora. Područja učenja predstavljena su s 512 x 512 elemenata slike na ekranu grafičkog računala.

3.1. PRVO PODRUČJE UCENJA

Prvo područje učenja prikazano je na slici 6. uz pomoć podataka trećeg kanala skenera, a definirano je geografskim koordinatama 5N i 95E, koje prolaze središtem slike. Slika predstavlja područje Andamanskog mora sa zapadnim ratom otoka Sumatra (središnji donji dio slike). Na području učenja istaknute su slijedeće klase pojava: more, Cumulonimbus, Altostratus, Stratocumulus, Cumulus te Cirrus. Ćestinu pojavljivanja pojedinih nijansi sive skale u pojedinom kanalu mjerenja skenera prikazuju histogrami na slici 8. Analiza histograma ukazuje na postojanje maksimuma (slika 8b i 8c) koji odgovara vrijednosti sive skale mora (kanal 3 i kanal 4). Histogram ĉestine pojavljivanja nijansi sive skale za prvi kanal mjerenja u vidljivom dijelu spektra (slika 8a) ukazuje na najveću ĉestinu 18 800 za vrijednost sive skale 93 koja odgovara srednjaku klase oblika Stratocumulus i Cumulus. Sekundarni maksimum ĉestine ima vrijednost 380 za vrijednost sive skale 109, koja odgovara klasi Altostratus.

3.2. DRUGO PODRUČJE UCENJA

Drugo područje učenja klasifikatora predstavlja površinu Zemlje na geografskim koordinatama 9N širine i 99E dužine, predstavlja Malezijski poluostrvo u predelu prelazke Kra, s dijelom Andamanskog mora i Tajlandskog zaljeva na istoku. Na tom području istaknute su klase pojava: more, kopno, Altostratus, Stratocumulus, Cumulus, Cirrus, Stratus i Cumulus congestus. Ĉestina pojave nivoa sive skale u pojedinom kanalu mjerenja za drugo područje učenja prikazano je histogramom na slici 9. Histogram ĉestine sive skale za ovo područje učenja u vidljivom dijelu spektra (slika 9a) karakterižiran je maksimumom za vrijednost 87 koja odgovara klasi more, i za vrijednost 114 koja je najbliža klasa Altostratus. Na histogramu ĉestine sive skala kanala 3, (slika 9b) izražen je maksimum za vrijednost sive skale 14, koja odgovara klasi more, i sekundarni maksimum.
Slika 5. Priobrazba sintezi situacija dana 23. 01. 1984. u 00 GMT. nad područjem sjeverne Indije i masiva Himalaje.

Slika 7. Odabrana slika s ozorcima (zaokruženi dijelovi) za učešće klasifikatora snimljen iz satelita NOAA 7, dana 23. 01. 1984., u orbiti br. 13323, nabor kompozitna slika.

Sl. 8/a) vidljivi dio spektra, kanal 1;
Sl. 8/b) blizu infracrveni dio spektra, kanal 3;

Sl. 8/c) infracrveni dio spektra, kanal 4.
Slika 8. Histogrami čestine pojavljivanja pojedinih nijansi sive skale na prvom odabranom području za učenje klasifikatora.

Sl. 9/b) blizu infracrveni dio spektra, kanal 3;

Sl. 9/c) infracrveni dio spektra, kanal 4.
Slika 9. Histogrami čestine pojavljivanja pojedinih nijansi sive skale na drugom odabranom području za učenje klasifikatora.

Sl. 9/a) vidljivi dio spektra, kanal 1;

Sl. 10/a) vidljivi dio spektra, kanal 1;
za vrijednost 23 koja je blizu vrijednosti srednjaka za klase zemlja ili Stratus. Histogram čestine sive skale kanala 4 u infracrvenom dijelu Spektra (slika 9c) ukazuje na maksimalnu čestinu za vrijednosti 151 i 154 sive skale, koje odgovaraju klasi tlo. Sekundarni je maksimum za vrijednost 182 koja odgovara klasi naoblake Cirrus.

3.3. TREĆE PODRUCJE UČENJA

Treće područje učenja predstavlja područje Kašmira i masiva Kara Korum. Karakteristične su klase pojava na tom području: snijeg, tlo i sloj magle u središnjem dijelu slike (slika 7).

Za histogram čestine pojava sive skale u vidljivom i infracrvenom dijelu spektra (slika 10 a, c) za treće područje učenja klasifikatora karakteristična su dva maksimuma koji odgovaraju klasama zemlja i snijega. U trećem kanalu (slika 10b) najslabije je izražena razlika među klasama te se javlja samo jedan maksimum koji ukazuje na slabu separabilnost među klasama tlo i snijeg u tom području temperature.

<table>
<thead>
<tr>
<th>Klasa</th>
<th>Broj elemenata slike</th>
<th>Srednjak</th>
<th>Kovarijance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2493</td>
<td>209.8</td>
<td>69.9</td>
</tr>
<tr>
<td>2</td>
<td>395</td>
<td>176.1</td>
<td>67.3</td>
</tr>
<tr>
<td>3</td>
<td>2616</td>
<td>110.2</td>
<td>7.8</td>
</tr>
<tr>
<td>4</td>
<td>2381</td>
<td>166.1</td>
<td>621.9</td>
</tr>
<tr>
<td>5</td>
<td>2698</td>
<td>107.0</td>
<td>142.3</td>
</tr>
<tr>
<td>6</td>
<td>2615</td>
<td>107.4</td>
<td>142.3</td>
</tr>
<tr>
<td>7</td>
<td>460</td>
<td>95.9</td>
<td>0.9</td>
</tr>
<tr>
<td>8</td>
<td>345</td>
<td>167.9</td>
<td>32.2</td>
</tr>
<tr>
<td>9</td>
<td>2494</td>
<td>87.9</td>
<td>17.5</td>
</tr>
<tr>
<td>10</td>
<td>5665</td>
<td>86.4</td>
<td>8.7</td>
</tr>
<tr>
<td>11</td>
<td>5666</td>
<td>145.1</td>
<td>15.7</td>
</tr>
</tbody>
</table>

4. REZULTATI RASPOZNAVANJA OBLACNIH SISTEMA

Postupak klasifikacije odvijao se na dva načina. Prvi algoritam definiran je jednakožbom (6) uz prijavi vjerojatnost pojava klase u jedinici za sve klase. Drugi je algoritam modificiranja varijante algoritma klasifikasi-
Klasifikator oblikova svrstava oblake u klase označene brojevima od 1 do 12. Nakon razvrstavanja svaki se element slike prikazuje intenzitetom sive skale od 1 do 12, (4 bita) na ekransko rezoluciju 512 x 512 točaka. Postupkom raspobravanja klase broj podataka znatno se reducira, od maksimalnog broja raspoloživih podataka za svaki element slike, 3 x 8 bita, postupkom se dobiva 1 x 4 bita informacije za svaki element slike. Prikazivanje slika na monitoru u boji omogućenje je postupkom pridjevljivanja boja vrijednostima sive skale. Svaku vrijednost sive skale od 1 do 12, koja odgovara nekoj od klasificiranih vrsta oblaka i pojava, pridijeljena je boja.

Za lakše raspobravanje klasa pojava nakon klasifikacije izrađen je program koji na klasificiranu sliku nanoši skatu boja koje se pridjevljaju pojedinom klasi. Skala boja nanosi se na donji rub slike s rastućim vrijednostima klasa udesno.

Nakon učenja klasifikatora izvršeno je raspobravanje vrsta podloge i rođa oblaka na slikama 1 i 2. Za identifikaciju je primijenjena trodimenzionalna normalna razdioba kao funkcija diskriminacije, a u postupku su upotrebљeni parametri funkcije diskriminacije prema tablici 3. Raspobravanje je vršeno u devet klasa pojava i oblaka. Dvije klase Nimbostratus (3) i Altocumulus (4) - klasifikator u ovom stupnju razvoja još nije mogao raspoznati zbog nedostatka reprezentativnih uzoraka tih klasa na slikama.

Rezultat raspobravanja prvog odabrana područja bez primjene praga vrijednosnosti prikazana je slikom 11. Klasifikator raspobrava karakterističan oblaci sistem Cumulonimbus (1) povezan sa Cirrusima (6) i Cumulus-congestusima (2) u središnjem donjem dijelu slike. Raspobrane su i klase oblaka Altocumulus (5) u središnjem gornjem dijelu slike, te sistem Cirrusa u gornjem desnem kutu slike. Slojevita naoblaka zauzima gornji lievi dio slike i sastoji se od sistema: Cumulus-congestus, Stratocumulus (7) i Altocumulus. Središnji dio slike prikazuje morsku površinu (11) iznad koje se nalazi sistem Cumulusa (7) ljepe vremena. Karakteristična je pojava tla (10) otoka Sumatra, koje se na slici jasno raspobravaju, dok je iz izvorne satelitske slike tlo vidljivo jedino na podacima kanala 4 satelitskog skenera.

Upotrebom postupka u kojem je primijenjen prag vrijednosnosti pojavljivanje se klasa nepoznatog porijekla na rubovima oblaci sistem platforma, te u području slojevite naoblake. Karakteristična je pojava klase nepoznatog porijeklja na rubovima prozirnih ciruških oblaka.

Histogram čestine pojava elemenata slike u pojednoj klasi, nakon raspobravanja prve obabrane slike, prikazan je za oba postupka raspobravanja slikom 12. Razlika u broju razvrstanih elemenata slike u pojedine klase primjenom različitih postupaka klasifikacije je smanjenje broja elemenata klasa Stratocumulus (7), more (11) i tlo (10). Kod ostalih klasa se dolazi do značajnog sma-
нjenja broja elemenata slike. Broj elemenata slike svrstanih u klasu oblaka Cumulonimbus (1) i Cumulus-congestus (2) gotovo je identičan u oba postupka raspoznавanja.

Histogrami čestine pojave elemenata slike u pojedinoj klasu nakon primjene postupka raspoznavanja, sa i bez praga vjerojatnosti, prikazani su slikom 14. Uočava se porast broja elemenata slike svrstanih u klasu nepoznatog porijekla na račun broja elemenata slike svrstanih u klase Stratocumulus (7) i Cirrus (6). Promjena bro-

![Slika 13. Rezultat klasifikacije satelitske slike drugog odabranog područja za devet klasi. Prag vjerojatnosti 0.](image)

![Slika 14. Histogrami čestine pojave klasi za klasificiranu sliku drugog odabranog područja. Raspoznavanje u devet klasa. a) prag vjerojatnosti 0; ja elemenata slike svrstanih u klasu Cumulus-congestus (2) i Altostratus (5) neznaća je.

Rezultat primjene postupka raspoznavanja bez praga vjerojatnosti na trećem odabranom području prikazan je na slici 15, raspoznaju se pojave klasa: tlo (10), snijeg (9), magla (8) i Stratocumulus-Cumulus (7). Primjenom postupka raspoznavanja bez praga vjerojatnosti na klasificiranoj slici pojavila se i klasa oblaka Cirrus (6). Postupkom raspoznavanja koji primjenjuje prag vjerojatnosti su elementi slike u prvoj klasifikaciji prikazani...
Stratocumulus-Cumulus (7), iako toliko naoblake te vrste na slici nije bilo. Upotrebom postupka s pragom vjerojatnosti većina je tih elemenata slike svrstana u klasu nepoznatog porijekla.

4.1. REZULTAT RASPOZNAVANJA OBLAKA I POJAVA NA SLICI ORBITA BROJ 12522

Treći je korak u provjeri rada automatskog klasifikatora oblaka raspoznавanje oblaka i pojava na slikama koje prikazuju prelet satelita orbitom broj 12522. Prilikom raspoznавanja koristena su oba postupka — sa i bez primjene praga vjerojatnosti. Za prag vjerojatnosti u raspoznавanju odabrana je vrijednost 0.05.

Slika 15: Rezultat klasifikacije satelitske slike trećeg odabranih područja za devet klasa. Prag vjerojatnosti 0.

Slika 16: Histogrami čestine pojava klase za klasificiranu sliku trećeg odabranih područja. Raspoznавanje u devet klasa. a) prag vjerojatnosti 0;
Raspoznavanje je izvedeno s parametrima funkcije diskriminacije definiranim vrijednostima iz tablice 3 za 9 klasa pojava. Na klasificiranim slikama raspoznaje se 6 klasa oblaka, tlo i more. Primjenom pravila raspoznavanja koje uključuje prag vjerojatnosti na klasificiranoj slici pojavljuje se klasa nepoznatog porijekla. Rezultati primjene pravila raspoznavanja prikazani su slikom 17 a, b. Osobina obiju slika je raspoznavanje klase tlo (zeleno) u gornjem desnom kutu slike. Raspoznaje se područje Indokine s jasno izraženim južnim rтом Vijetnama i prevlačom Kra u središnjem dijelu slike. Značajni oblačni sistemi koji su na slici raspoznat su linija Culumonimbusa (crveno) u lijevom dijelu slike, koja je okružena naoblakom roda Cumulus-congestus (svijetlo ljubičasto) i Stratocumulus (žuto). Središnji dio slike svrstan je u klasu more (tamno plavo); nad morem se proteže u obliku pera sloj Cirrusa (svijetlo plavo). Raspoznavanjem uz primjenu praga vjerojatnosti je dio elemenata slike svrstanih u klasu (7), svrstano u klasu nepoznatog porijekla.

Primjena pravila raspoznavanja uz upotrebu podataka tri kanala mjerenja satelita NOAA 7 dala je ohrabrujuće rezultate. Pogrešna klasifikacija javlja se u slučaju klasa kod kojih je iznos normalizirane J-M udaljenosti među parametrima funkcije diskriminacije mali, Lipovščak (1986). Do pogrešne klasifikacije upotrebom pravila definiranog jednadžbom (6), bez upotrebe praga vjerojatnosti, dolazi zbog svrstavanja podataka u klasu koja je najbliža izračunatoj vrijednosti funkcije diskriminacije. Uvođenjem pragova vjerojatnosti definiranih postupkom (9) sve izračunate vrijednosti funkcije diskriminacije manje od zadanog praga svrste se u klasu nepoznatog porijekla. Na taj način klasifikator svrsta rubna područja između različitih tipova oblaka i pojava koja imaju karakteristične oblike poaje u pojavu nepoznatog porijekla. Stoga su na slici 17 b poznate poaje okružene crnim rubom koji predstavlja prijelaznu zonu između dviju karakterističnih pojava.

5. ZAKLJUČAK

Postupak raspoznavanja oblaka i pojava na temelju satelitskih slika visoke moći razlučivanja koji je prikazan u tom radu je nakon provjere i prevođenja programa sa standardnog Fortrana u AP rutine uključen u pa-
SAŽETAK

Kratkoročna prognoza vremena (nowcasting) povraca se s potrebom za vrlo čestim meteorološkim osmatranjima satelita omogućuje neprekidno praćenje vremena na velikim prostranstvima Zemlje.

U radu su prikazani prvi rezultati primjene programa za automatsku klasifikaciju satelitskih slika oblika i podloge. Kao ulazni podaci za klasifikaciju oblika koristi su visoko rezolucioni podaci satelitskog skenera AVHRR (Advanced Very High Resolution Radiometer) meteorološkog satelita NOAA.

Rezultati satelitskih mjerenja pojedinih rodova i vrsta oblika u nekom području valnih duljina spektra mogu se prikazati normalnom razdiobom. Korišteni podaci tri kanala satelitskog skenera te je upotrijebljena trodimenzionalna normalna razdioba kao funkcija diskriminacije.

Za klasifikaciju oblika na osnovi digitalnih podataka satelitskog skenera veleći moci razlučivanja primijenjen je klasifikator tipa maksimalne vjerojatnosti (maximun likelihood). Postupak klasifikacije izvršen je prijelom dva algoritma: upotrebom Bayesova pravila maksimalne vjerovatnosti i algoritmom u kojem su ugradene ganičene vrijednosti (pragovi) koji definiraju vjejerojatnost da je pojava iz određene klase.

Prag vjerojatnosti je veličina koja je granična za prijelivanje nekog podatka određenoj klasi. Definira se unaprijed, prije postupka identifikacije i to za svaku klauzi posebno ili za sve klase zajedničkim iznosom. U rada je korišten prag vjerojatnosti 0.05, a algoritam za klasifikaciju svršava sve elemente slike za koje je vjerojatnost funkcije diskriminacije manja od praga u klauzi nepoznatog porijekla.

Klasifikator oblika svršava oblike u klase označene brojevima od 1 do 12. Nakon razvrstavanja svaki se element slike prikazuje određenom bojom na ekranu grafičkog računala. Postupkom klasifikacije reducira se broj podataka koji je potreban prenijeti korisniku satelitske slike. Od maksimalnog broja raspoloživih podataka za svaki element slike, 3 x 3 bita, postupkom se dobija 1 x 4 bita informacije za svaki element slike.

LITERATURA

ABSTRACT

The use of meteorological data for very short range weather forecasting (nowcasting) is connected with the need for a high number of classical meteorological observation data. The use of meteorological satellite enables the continuous weather monitoring over large areas of the Earth.

First results of the automatic cloud and underlaying surface classification of NOAA-7 satellite data is presented. The input data for the cloud classification are the high resolution NOAA-7 satellite data. AVHRR (Advanced Very High Resolution Radiometer) measures the radiation in five spectral bands: visible (channel 1 and 2), near infrared (channel 3) and infrared (channel 4 and 5).

The results of satellite measuring of cloud types in one spectral area can be represented by normal distribution. Multivariate normal density function is used as a discriminant function for cloud separation and identification of Earth surface from clouds.

Maximum likelihood classifier is applied for the digital data classification. The classification is made with two algorithms - using the Bayes rule of maximum likelihood and the threshold method. Threshold is a boundary value which defines the belonging of data to a defined class. Threshold is defined in advance, prior to the classification, separately for each class, or with a constant value for all classes. Threshold 0.05 is used and all the values of discrimination functions which are minor to the threshold value are classified in the reject class.

The cloud classifier classifies the clouds in classes marked with numbers from 1 to 12. Following the classification every pixel is presented by a defined colour on the computer screen. During the classification the amount of data is reduced. From the maximum number of data for every pixel, a 3×8 bit, the classification reduces the amount to a 1×4 bit for every pixel.