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In this paper, design and implementation of an automatic cloud classifier is discussed. It is assumed that

the pattern classes obey the multivariate normal distribution.

Maximum Likelihood with threshold and penalised

misclassification algorithms have been implemented both on host computer VAX-11/750 and Array Processor FPS-100.

This technique classifies not only different cloud types but land, sea and snow as well.

The result of classification and

the time required on host as well as on array processor for various complexities is presented. NOAA satellite pictures

have been used for testing.

Indexing terms : Training phase, Classification phase, Maximum likelihood, threshold, Penalised misclassification

Risk function

LOUD classification is very useful in meteorology to

identify the rain bearing clouds, tropical cyclones, esti-
mating the extent of cloud coverage, snow coverage, and
assessing the land erosion at sea coasts. One important
by-product of the classification is its ability of data com-
pression, which is very useful in data storage, transmission
and processing.

The early classification attempts were manual and
based on visible channel information [1]. The first attempt
for computer based classification was based on multi-
channel measurements. Desbois ef al. [2] used clustering
method for classification of three channel Meteosat data
to classify high level clouds.

PATTERN RECOGNITION MODEL

Following is the pattern recognition model for cloud
dassification (refer Fig 1).
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Fig 1 Pattern recognition model
Trainer is meant for training the classifier. This program
estimates the class characteristics and stores them for use during
classification. This is required to be done only once and the
classifier continues to classify a given imagery correctly as long
as there is no change in class characteristics

P SR X, are the values of different channels of the
multispectral scanner, as received from the satellite based
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sensor. Thus, each pixel is represented by an n-component
measurement vector X = (X3, Xj...... X,) T. The classi-
fier assigns the measurement vector to one of a prespecified
class according to an appropriate classification rule.

CLASSIFICATION SCHEME

Classifying different cloud classes (including land,
sea and snow) from a satellite imagery consists of the
following two phases:

—To estimate the characteristics of each class

—To classify a given picture into different classes

The first phase is called the training phase (or learning
phase) and the second phase is called the classification
phase.

THE TRAINING PHASE

We have assumed that the patterns (cloud classes)
obey normal distribution in each of the spectral band.
The mean vector and covariance matrix completely charac-
terise such types of patterns. Thus, the training phase
consists of estimating the mean vector and covariance
matrix for all classes of interest. Following is the list of
cloud classes [3].

Cumulonimbus (Cb)

Cumulus congestus (Cucong)

Nimbostratus

Altocumulus (Ac)

Altostratus (As)

Cirostratus (Cs), Cirus (Ci), Cirocumulus (Cc)
Stratocumulus (Sc), Cumulushumuli (Cu)
Stratus (St), Fog
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9. Snow
10. Land

11. Sea

Classes 6 and 7 are families of cloud classes. These
subclasses can not be identified by statistical method alone,
as they vary in texture and shape. Thus, syntactic methods
are suited to identify these subclasses. No attempt to
identify these subclasses is made in this paper.

Estimation of the characteristics
Mean of a sample set having discrete values is given by [4].

1 N
M((N) = _n_ffzx(i)

where X(i) ’s are the sample values
N is the number of samples
Similarly, the covariance can be estimated from the relation

C(N) = _fN_l_;zvl X () X () T—M (N) M(N) T

where C(N) is the covariance of N elements
X(i) T is the transpose of X(i)
and M(N)T is transpose of M(N)

In the process of training, adequate number of sample
elements may not be available at a time. In that case, it
is required to update these parameters (characteristics)
as and when more number of samples become available.
This is necessary for better representation of the pattern
class.

If we have two sets of Mean vectors M(N) and M(K)
for N and K number of samples respectively, then the over-
all mean for N-+-K samples is given by

* *
M+E) <N M(szlilf( M(K)

Similarly, if C(N) and C(K) are the covariance matrices
for N and K number of samples respectively, then the over-
all covariance matrix is given by

C (N+K) = FN_-f_—K(C(N)+M(N)*(N)T)

K i
TN Tx (CK)+MEK)* M(K)T)

A (N*M(N)+K*M(K)) ~ (N*M(N)—i—K*M(K))T
(N+K)?
If n is the number of channels used, the Mean vector will

have n elements, and covariance will be n x n symmetric
matrix.

CLASSIFICATION PHASE

The job of a classifier is, given a pixel (n-dimensional
measurement vector), assign the pixel to the class it belongs

3

to. This is done by constructing some functions which
can distinguish different classes. These functions are
called discriminant functions. Following are the algo-
rithms used to derive the discriminant functions.

MAXIMUM LIKELIHOOD PRINCIPLE (MLP)

Suppose there are M pixel classes. Let p (X/w;) be the
probability density function associated with the measure-
ment vector X, given that X is from class i. Let OP (w,) be
the a priori probability of class i. A priori probability is
the probability of observing a pixel from class i, independent
of any other information.

Then the MLP (5) states that assign X to class 7, if and
only if p(X/w;) P(w;) > P(X/w)* P(w)) for all j £ i
Thus, the discriminant function by MLP is given by g;
(X) = p (w)* P (X)w)
_Pw)* exp (=0.5(X—M)T* S/ '* (X—M,))
(2: P])nlz * (S'.)O-S
where M, is the mean vector for class 7,

S;! is the inverse of covariance matrix and (S) is
the absolute value of the determinant of covariance matrix.

An equivalent set of discriminant function can be derived
by taking logarithm, which is simpler to implement.

G, (X)=log, P (w)—0.5 log, (S)
—0.5 (X—M) T*S7"*(X— M)
where § = (2 PI)" (S)) ;

Once a problem has been specified and the statistical
parameters estimated from training data, only the quadratic
term (right most in the above equation) varies from pixel
to pixel during the actual classification.

MLP WITH THRESHOLD

Notice that the pattern recognition system based on
the MLPclassifies every pattern presented into one of the
classes it has been designed to recognise. But there are
almost invarably a number of patterns in the area to be
classified which in fact do not belong to any of the classes.
Such patterns may belong to classes for which there are
insufficient training patterns for estimating the parameters
or the classes which have been completely overlooked.
Although such patterns can not be correctly classified,
since there is no discriminant function corresponding to
correct class. We can at least design the classifier to detect
them, provided they are spectrally very much different
from the points in the ‘valid’ classes. As suggested by the
one dimensional, two class example shown in Fig 2, the
points to be detected correspond to those which have a very
low probability of belonging to any of the trained classes.
At the cost of ‘rejecting’ a very small percentage of the
points actually belongingto the training classes, it is possible
to reject a comparatively large number of points not belong-
ing to any of the training classes. This is accomplished by
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Fig 2 Thresholding principle

a technique known as ‘Thresholding’, in which the proba--

bility value P (X/w;) associated with the data vector and the
class into which it would ordinarily be classified is compared
with a user specified threshold. If the probability is below
that threshold, the pixel is assigned to a ‘Reject’ class.

. For the estimation of threshold value, consider the class
conditional probability density function
exp (—0.5(X —M)T*S;"* (X—M))
(Z P[)’”“ (Si)o"'
In this expression, the numerator varies from zero to one.
This term is taken as the expression for cut-off probability.

. P(X]w;) =

Thus, the expression for estimating threshold value for
a class becomes

Fig 3 NOAA satellite picture, VIS, Orbit 9514 dated 28-04-1983
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Fig 4 Classified picture with MLT algorithm

cprob (7)
2* Pl)n’2t (SI)U[)

Where cprob (i) is the cut-off probability for class i,
0 < cprob < 1

Tw) =
(W) n

The cprob value is assigned by the user for each class.
Then the threshold value is computed for each class. At
the time of classification, the maximum probability class is
compared against its threshold. If the maximum pro-
bability is greater-than threshold, then it is assigned to that
class, otherwise it is assigned to reject class.

PENALIZED MISCLASSIFICATION PRINCIPLE
(PMP)

Using the same discriminat function, we can construct
a slightly different discriminant function, which takes into
account different losses involved in assigning a sample
pattern to a particular class.

Suppose, a given measurement vector is assigned to a
class i when its actual class is j, a loss L (i, /) is incurred. If

P (wj/X) is the probability that the actual class of the
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with PMP algorithm

Fig 5 Classified picture
sample pattern is w; (also called the posteriori probability), M
shen the expected loss with the above decision rule is given Where P (X) = 5 P (X] w;)* P (w.), this is constant and Jcan
by, be ignored. =1
M
R @) = ,ZIL (@ J)* P (w;/X) Then the discriminant function is given by
Jj=
In general L (i,j) < O fori =j M S o
R{)— 3 P P (w;
and L (i,j) > 9 for i # j for @ it EABIEE )" 7 )
R(i) is called the Risk function [6] risk involved in assigning
a sample X belonging to class j to class i, L(i, j) is also called

By Bayes Decision theory,

P (w/X) — P (X/w)* P (w))
. the loss matrix or penalty matrix.

P (X)



MEHTRE ef al. : AuToMATIC CLOUD CLASSIFICATION 277

Table 1 Results after training for 8 classes

‘Cloud Classes Number of Pixels 3 : Class Mean Class Covariance

1 1052 202.34886 42.43945 59.26978 4.28564
99.49905 59.26978 210.68347 —3.73413
231.90114 4.28564 —3.73413 3.64355
5 0 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

3 0 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000

4 0 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

5 866 108.08314 1.81287 —0.44836 —0.87598
49.17090 —0.44836 34.90613 43.43176

142.21709 —0.87598 43.43176 75.30835

6 549 135.97267 210.82495 62.06851 111.4886
25.83789 62.06851 19.75333 35.84644
176.07468 111.48682 35.84644 83.26416
7 297 152.44444 152.10547 131.09009 10.38989
54.89562 131.09009 280.76688 —127.25354
164.02356 10.38989 —127.25354 396.39990
8 892 95.96076 1.39868 —0.22531 2.74084
29:17152 —0.22531 1.08157 —1.48853

168.99214 2.74084 —1.48853 13.15381

9 1481 169.06549 125.87646 —42.91138 18.56348
54.65631 —42.91138 149.96490 —29.64868

231.01485 18.56348 —29.64868 47.67139

10 2369 89.42297 22.11084 0.30322 42.58789
26.96581 0.30322 5.29175 —6.63379

155.30815 42.58789 —6.63379 134.85938

11 4136 89.79763 12.27832 6.89954 —23.40234
15.17626 6.89954 5.45854 —19.14600

138.80995 —23.40234 —19.14600 75.90234

Table 2 The time factor

Details Alg. : Host run time AP run time
(Hrs : Mins : Seconds) (Minute : Seconds)

CPU Elapsed CPU Elapsed

1; =1 C=2 % 0:04:17.59 0:08:44.20 0:5.35 3:09.45
2 0:05:43.74 0:07:05.53 0:5.24 3:57.44

2 N=1 C=4 1 0:07:18.07 0:11:52.83 0:5.14 4:38.50
2 0:14:49.01 0:37:26.60 0:5.39 4:35.96

3. N=3 C=8 1 0:21:58.70 0:37:29.11 0:11.52 8:09.72
2 0:47:33.57 1:07:35.19 0:11.49 8:40.19

(These timings refer to 512 X 512 size picture of 8 bit data)

N is the number of channels used for classification (and training).
C is the number of classes for which classifier is trained.

Alg. 1 : refers to maximum likelihood with threshold.

Alg. 2 : refers to penalized misclassification
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A given sample pixel is assigned to that class for which
the risk function is minimum.

RESULTS

\

NOAA satellite pictures have been used for testing the
above classification scheme.

Figure 3 shows a NOAA-7 satellite picture in VIS chan-
nel. The TRAINER was run to acquire characteristics of
different cloud classes. Table 1 shows the parameters esti-
mated by the TRAINER program. In all, it was possible to
train the classifier for eight classes from the available
pictures. Channels 1,3 and 4 of the ‘AVHRR channels
(refer appendix) were used.

The Classifier was tested at various stages of training.
To start with, it was trained for only one class using only
one channel and tested for classification. Using Maximum
likelihood with threshold, it gave two classes, one for which
it was trained and the other the ‘reject’ class.

Figure 3 shows the input picture used for classification.

Figures 4 and 5 are the classified pictures using the two -

algorithms.

Table 1 gives a glimpse at the time requirements of classi-
fication, with different input picture complexities, and also
for different algorithms. Itis clear from the table that the
CPU time increases with the number of channels used and
the number of classes involved in the classification. As
expected, AP runs are much faster than the host. Also,
the increase in CPU time for more number of channels on
AP runs is much less compared to the host CPU time. It
can also be observed from Table 2 that the PMP is taking
almost double the time taken by MLT on the host. This
difference is seen only on host and is missing consplcuously
on AP runs.

CONCLUSION

The classifier is found working satisfactorily even with
small set of training samples (as few as 250 pixels for one
class). It is evident from the pictures shown that the classi-
fier has identified the land, sea and different types of clouds

IETE TECHNICAL REVIEW, Vol. 3, No. 6, 1986

clearly. It is felt that this technique is a good tool in the
hands of researchers and meteorologists, in addition to
being a general purpose classifier for satellite imagery. It
will also be useful in building an expert system for satellite
imagery.
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APPENDIX : AVHRR Channels

In AVHRR, channels 1 and 2 (visible, as they are called) represent
the reflectance in the spectral band, correspond to the thickness and
composition of clouds. Channels 4 and 5 (called IR) represent the
radiation in the spectral band, correspond to cloud temperature. And
channel 3 (near IR) represents both reflectance and radiation, corres-
ponds to the temperature and brightness (and in good for the land-
sea boundary demarcation). Channels 3,4 and 5 are called the
thermal channels. Following is spectrum of AVHRR channels:

CHANNEL WAVELENGTH (in micrometre)
1 0.55— 0.68
2 0.72— 1.1
3 3.55— 3.93
4 10.3 —11.3
> 11.5 —12.5
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